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In the equation k(t) = kA [I - JAh(t’)dt‘] for the time-dependent second-order rate constant for a bimolecular 
association A + B = P in solution, h(t)  is the probability per unit time of recombination of a geminate AB pair at time 
t following its creation from P at time zero. 

Without assuming any particular equations for molecular 
transport or any particular molecular shapes, sizes, spins, or 
conformations, etc., it is shown below that the time depen- 
dence of the second-order rate coefficient k(t)  of a fast 
bimolecular reaction A + B + P in solution is determined 
entirely by the behaviour of AB pairs formed from products 
(geminate pairs). This clarifies the molecular-pair analyses of 
Noyes and generalizes similar conclusions derived by Berg 
from a diffusion-equation analysis with spherical mol- 
ecules. 1-3 

When reactants initially have equilibrium spatial distribu- 
tions, k(t) can be expressed by equation (1).1-6 For equilib- 
rium spatial distributions, the activation-control rate constant 
kA applies. As time passes in a product-free system, AB pairs 
with small initial separations react, radial concentration 
gradients develop around reactant molecules, diffusion begins 
to limit the reaction rate, and the rate coefficient decreases. 

k(t)  = kA [I - J~ ( t ’ )d t ’ ]  

Noyes used artificial devices to maintain equilibrium spatial 
distributions in product-free systems. *,2 The present analysis 
avoids artificialities by applying Noyes’ method to a system 
that is at equilibrium. 

Consider an equilibrium system. Let time zero be chosen 
arbitrarily. Denote as ‘old’ those reactant molecules that are 
present at time zero. At a later time, some old A and B 
molecules will have reacted and some ‘new’ ones will have 
been formed from products. A corresponding product-free 
system will contain only old A and B at all times. 

At time zero, the distributions of A and B are identical in 
equilibrium and corresponding product-free systems. In the 
equilibrium system, in contrast to the product-free system, the 
concentration gradients that develop for old A and B 
molecules are exactly compensated (ignoring or averaging 
fluctuations) by new A and B. All A + B -+ P events are 
balanced in time, space, and other aspects by their micro- 
scopic reverses, P -+ A + B. 

A ‘geminate’ pair consists of particular A and B molecules 
that were created together from the same particular product 
molecules.7 ‘Geminate reaction’ is the formation of P from a 
geminate pair. Let h’(t) be the probability per unit time of 
geminate reaction at time t of a geminate pair created at time 
zero. Then equation (2) describes the time development of the 
equilibrium system. Here [ ] and [ 3, denote, respectively, 
bulk concentrations of all molecules and of new ones. 

Equation (2), which is analogous to one given by Noyes,8 
expresses the rate of all AB reactions (left side) as the sum 
(right side) of the rates of five AB reaction types: old A-old B, 
old A-new B, new A-old B, nongeminate new A-new B, and 
geminate new A-new B. In the fifth term of the right side, the 
rate of geminate pair production is kA[A][B], the rate of 
product formation, because at equilibrium geminate pairs are 

formed from products at the same rate that products are 
formed from A and B. 

Equation (2) rearranges to equation (3). Comparison of 
equations (3) and (1) identifies h(t) as h’(t). 

k(t) = kA [I - J$’(t’)dt’] (3) 

The interpretation of the behaviour of a product-free 
system in terms of h’(t) is necessarily indirect, since neither 
products nor geminate pairs are present. However, certain 
AB pairs in product-free systems must behave exactly as do 
geminate pairs, since A and B initially have identical, 
equilibrium distributions in corresponding product-free and 
equilibrium systems. The disappearance of these ‘geminate- 
cognate’ pairs results in the time dependence of k(t) in a 
product-free system. 

The long-time limit of equation (1) or (3) is equation (4)’ 
where k is the ‘long-time’ rate constant and 3 is the probability 
of geminate recombination [ j,”h‘(t)dt]. The rate constant k 
describes bimolecular association to a close approximation 
after about 10-9 s, according to Noyes.’ Equation (4) has been 
derived previously through a thermochemical kinetic argu- 
ment.9 

That h(t) is the geminate-reaction probability h’(t) cannot 
be extracted from considerations of product-free systems 
only. Nevertheless, correct treatments of equilibrium and 
product-free systems must be equivalent. 

In Noyes’ 1961 treatment, a hypothetical system is con- 
sidered in which no actual reactions occur but each A and B 
that ‘get into a situation where they would react if the system 
were a real one’ are marked as having ‘reacted’.2 Then h(t)dt is 
defined as the probability ‘that a pair of molecules in infinite 
volume that have previously ‘reacted’ with each other will 
undergo their first subsequent ‘reaction’ with each other 
between t and t + dt later.’ Equations (2) and (1) follow. 

The artificiality of the system in terms of which the 1961 h(t)  
is defined obscures its fundamental physical meaning. In the 
light of the present analysis, the 1961 h(t) can be given the 
following interpretation. The only situation that an A and B 
can ‘get into’ that would guarantee reaction in a real system is 
the transition state for P formation. An A and B that reach the 
transition state and are marked (but don’t react) must behave 
after marking as if they were formed from P by the 
microscopic reverse of their ‘reaction’, since they are emerg- 
ing towards reactants from the transition state that separates P 
from A and B and since their behaviour must preserve 
equilibrium over marked and unmarked A and B molecules. 
Consequently, emergent pairs must behave as geminate pairs 
and Noyes’ 1961 h(t)  is properly interpreted as the probability 
h’(t) of geminate reaction. 

Noyes’ 1954 molecular-pair treatment does not lead to 
equation (4) and the ‘h(t)’ defined therein is not equivalent to 
h‘(t). The 1954 ‘h(t)’ is the reaction probability per unit time of 
an A and a B that separated at time zero from adjacent 
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positions in solution.1 That the 1954 treatment does not lead 
properly to equation (1) may account for some of the 
confusion in the literature over the equivalence (or lack 
thereof) of molecular-pair and diffusion-equation treat- 
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